The use of Omics in Hazard Characterisation

Marcel Zwietering Laboratory of Food Microbiology
Team

- Nabila Haddad, Nick Johnson, Sophia Kathariou, Aline Métris, Trevor Phister, Annemarie Pielaat, Chrysoula Tassou, Marjon H.J. Wells-Bennik, Marcel H. Zwietering

Haddad et al. submitted
Next generation Microbiological Risk Assessment
- Potential of Omics data for Hazard Characterisation -

The views expressed in this presentation are those of the author(s) and do not necessarily represent positions or policies of IAFP, ICFMH, ILSI, Nestlé, PepsiCo, Inc., Unilever, NIZO or any authors affiliation
Team

Marcel Zwietering
Wageningen University
the Netherlands

Sophia Kathariou
North Carolina State University
USA

Nick Johnson
Nestlé Research
Switzerland

Nabila Haddad
UMR SECALIM, INRA/Oniris
France

Trevor Phister
PepsiCo,
United Kingdom

Aline Métris
Formerly, Institute of Food Research,
UK
Presently, Unilever, UK

Chrysoula Tassou
Hellenic Agricultural Organization –
DEMETER,
Greece

Marjon Wells-Bennik
NIZO, The Netherlands.

Annemarie Pielaat
Public Health and the Environment
(RIVM)
Presently, Unilever,
The Netherlands
Microbiological Risk Assessment

- Uncertainties & variability
 food product, organisms, host = biological entities

Various food processing, sources of contamination and organisms

- Variation in the many relevant factors
- Uncertainty results from imperfect knowledge

Number of cases

figure: courtesy of J.M Membre, INRA Nantes
Hazard Characterisation

CAC, 2016: ”The qualitative and/or quantitative evaluation of the nature of the adverse health effects associated with biological, chemical and physical agents which may be present in food. For chemical agents, a dose–response assessment should be performed. For biological or physical agents, a dose–response assessment should be performed if the data are obtainable.”
Hazard Characterisation

Data obtained from:
- Animal or cell culture model systems
- Outbreaks
- General Epidemiology

⇒ All containing much uncertainty and variability

⇒ Translation, effects biology (organism, food host) effects food (pH, fat), stomach, intestinal flora,
Use of NG-Omics

Use of genetic determinants
 measure for pathogenicity
 measure for virulence
 measure of severity
 dose-response

Use of transcriptomics / metabolomics
Use of genetic determinants

Some organisms are pathogenic, others are not.

Opportunistic to real pathogens: definitions!

Links between genetic determinants and pathogenicity (from “simple” to complex pathways)

→ Example: No ces-gene no cereulide!
Use of genetic determinants

<table>
<thead>
<tr>
<th>Example of sequence of a more and more stricter definition of pathogenic potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEC = (stx1 OR stx2)</td>
</tr>
<tr>
<td>STEC = (stx1 OR stx2) AND an attachment factor like genetic element</td>
</tr>
<tr>
<td>STEC = (stx1 OR stx2) AND known attachment factor</td>
</tr>
<tr>
<td>STEC = (stx1 OR stx2) AND (Eae OR (aaiC and aggR))</td>
</tr>
<tr>
<td>STEC = (stx1 OR stx2) AND (Eae)</td>
</tr>
</tbody>
</table>
Use of genetic determinants

- Traditionally viewed/regulated by serotype
 - Dutch guideline of 2014
 - for high risk ready to eat (RTE) foods
 - all STEC with (stx1 OR stx2) are considered unacceptable,
 - low risk food products (to be cooked)
 - only STEC’s that have (stx1 AND/OR stx2) AND [(eae) OR (aaiC AND aggR)] AND belonging to serotypes (O26, O103, O111, O145, O157, O104, O45, O121 en O174)
Level of virulence

Sequence data: Genetic data (SNPs) + epidemiological and phenotypic analysis (*in vitro* attachment to epithelial cells as a proxy for virulence)

Transcriptomics and proteomics approaches:
- characterisation of the physiological state of pathogens
- considering the “food chain-human gastrointestinal track continuum” to predict food processing and conservation conditions effect on pathogen’s virulence and toxin prod.
- towards biomarkers of virulence?

Main challenges:
(i) correlation biomarker response and illness conditions
(ii) to quantify the correlation
<table>
<thead>
<tr>
<th>Omic methods</th>
<th>Type of biomarker</th>
<th>Example (from literature)</th>
<th>Type of response</th>
<th>Reproducibility</th>
<th>Remarks and ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomics</td>
<td>Gene (CDS)</td>
<td>stx of E. coli</td>
<td>Qualitative</td>
<td></td>
<td>Lindsey et al., 2016</td>
</tr>
<tr>
<td></td>
<td>SNP</td>
<td>stx of E. coli</td>
<td>Qualitative</td>
<td></td>
<td>Pielaat et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Multiple copies</td>
<td>Neurotoxin genes of Clostridium botulinum</td>
<td>Qualitative</td>
<td></td>
<td>Peck and van Vliet, 2016</td>
</tr>
<tr>
<td>Transcriptomic</td>
<td>mRNA</td>
<td>SPI-1 genes or hil1A of Salmonella enterica</td>
<td>Quantitative</td>
<td>2 biological replicates</td>
<td>Comparison between two different serotypes. Elhadad et al., 2016</td>
</tr>
<tr>
<td>Proteomic</td>
<td>protein</td>
<td>TypA of Cronobacter sakazakii</td>
<td>Quantitative</td>
<td>3 technical replicates, but no biological replicate</td>
<td>Comparison between virulent and non-virulent strains. Du et al., 2015</td>
</tr>
<tr>
<td>Metabolomic</td>
<td>metabolite</td>
<td>Cereulide toxin of Bacillus cereus</td>
<td>Quantitative</td>
<td></td>
<td>Biesta-Peters et al. 2010; Marxen et al., 2015</td>
</tr>
</tbody>
</table>
The severity of the outcome

Both much information from microorganism and host at transcriptomics and proteomics level can give insight

→ better characterization of the pathogen using omics technologies to assess:
the presence, diversity, expression of genes encoding toxins, toxin-assembling complexes, and virulence factors

→ biomarkers predicting the severity of clinical signs or relapses
⇒ for clinical & diagnostic purposes

→ towards prediction of the severity of the outcome?
Dose Response *Salmonella*

How does it move based on strain, serovar, food, host, ?
Can we segregate and reduce uncertainty or variability?
- Quantitative, Generic, Transparent
Regulatory network of virulence genes of *Salmonella Typhimurium*
Implications

- great developments and use in outbreak investigation and epidemiology
 + huge data and information collection
 ! standards, harmonization
- much “clinical” focussed
- QMRA: level of the dose, behaviour of the organism in the food, the state of the organism, behaviour during the disease process
- strain variation
 - more specific segregation in virulence/pathogenicity
 - validation ?
- uncertainty
Conclusions

- Next Generation Omics (NG-Omics) impacts the future of hazard characterisation

- NG-Omics improves understanding of variability and limits uncertainty in the dose-response relation

- NG-Omics improves understanding of pathogenicity, virulence and severity of disease outcomes

- Selection of virulence biomarkers using NG-Omics and modelling can help in prediction of pathogenicity and severity of the disease
Thanks